Characterization of Bijective Discretized Rotations

نویسندگان

  • Bertrand Nouvel
  • Eric Rémila
چکیده

A discretized rotation is the composition of an Euclidean rotation with the rounding operation. For 0 < α < π/4, we prove that the discretized rotation [rα] is bijective if and only if there exists a positive integer k such as {cosα, sinα} = { 2k + 1 2k2 + 2k + 1 , 2k + 2k 2k2 + 2k + 1 } The proof uses a particular subgroup of the torus (R/Z).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of bijective discretized rotations by Gaussian integers

Une rotation discrète est la composition d'une rotation euclidienne et d'une opération d'arrondi. Bien sûr, toutes les rotations discrètes ne sont pas bijectives : par exemple, deux points distincts peuvent avoir la même image pour une rotation discrète donnée. Néanmoins, pour un certain ensemble d'angles, les rotations discrètes sont bijectives. Dans la grille carrée régulière, les rotations d...

متن کامل

Discrete rotations and symbolic dynamics

The aim of this paper is to study local configurations issued from discrete rotations. The algorithm of discrete rotations that we consider is the discretized rotation. It simply consists in the composition of a Euclidean rotation with a rounding operation, as studied in [B. Nouvel, E. Rémila, On colorations induced by discrete rotations, in: DGCI, in: LNCS, vol. 2886, 2003, pp. 174–183; B. Nou...

متن کامل

Bijectivity Certification of 3D Digitized Rotations

Euclidean rotations in Rn are bijective and isometric maps. Nevertheless, they lose these properties when digitized in Zn. For n = 2, the subset of bijective digitized rotations has been described explicitly by Nouvel and Rémila and more recently by Roussillon and Cœurjolly. In the case of 3D digitized rotations, the same characterization has remained an open problem. In this article, we propos...

متن کامل

Periods of discretized linear Anosov maps

Integer m m-matrices A with determinant 1 de ne di eomorphisms of the m-dimensional torus Tm = (IR= Z)m into itself. Likewise, they de ne bijective self-maps of the discretized tori ( Z=n Z)m = ( Zn)m. We present estimates of the surprisingly low order (or period) PerA(n) of the iteration Ar; r = 1; 2; 3; . . ., on the discretized torus ( Zn)m. We obtain PerA(n) 3n for dimension m = 2. In the s...

متن کامل

TOPOLOGICAL CHARACTERIZATION FOR FUZZY REGULAR LANGUAGES

We present a topological characterization for fuzzy regular languages: we show that there is a bijective correspondence between fuzzy regular languages and the set of all clopen fuzzy subsets with finite image in the induced fuzzy topological space of Stone space (Profinite space), and then we give a representation of closed fuzzy subsets in the induced fuzzy topological space via fuzzy regular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004